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Wouldn’t it be nice if we could determine the molar heat
capacity or the viscosity of a liquid purely from theory,
without ever using any experimental setup? We can!

1 Historical and educational introduction

Chemistry students must quickly learn to switch between the
microscopic and the macroscopic world, which demands from
them a high degree of abstraction. In the morning lecture they

deal with O
H H

and in the afternoon lab course they distil

water and determine its boiling point. It is not only that they
switch between two levels of different scale, but at the same
time they switch between one isolated molecule and a collection
of interacting molecules. In addition, in organic chemistry they
usually assign in their mind the properties of the isolated
molecule to the ensemble of the liquid, and if the discrepancy
between the two is too great they invoke the concept of ‘solvent
effects’, which is a nice name for this discrepancy.

In physical chemistry they learn how microscopic or
molecular properties can be calculated using quantum mechan-
ics. Thermodynamic laws are taught which relate different

macroscopic properties to each other and, finally, some
statistical thermodynamics is introduced to show how the
microcosmos relates to the macrocosmos, providing the bridge
needed to make the switch between the two. Mostly, statistical
thermodynamics is limited to the basics—ensembles, partition
functions, Boltzmann’s law, the calculation of thermodynamic
energies and entropy from the partition function—and applica-
tions to the ideal gas. The more interesting task, the calculation
of properties of real gases or liquids, is usually neglected. This
situation could change soon, as several conditions have now
been fulfilled which together make this area more amenable to
interesting calculations, both in research and in teaching. Let us
follow the historical development of the three basic fields
necessary for a new approach: quantum chemistry, simulations,
and the combination of both with statistical thermodynamics to
obtain macroscopic properties.

The birth of quantum chemistry dates back to the late 1920’s
when the hydrogen bond was interpreted by Heitler and London
using valence bond theory, followed a few years later by
Hückel’s development of his molecular orbital approach. But
for the present purpose, i.e. quantitative calculations of
molecular and intermolecular properties, the real breakthrough
came in the 1960’s, when semiempirical programs became
available and ab initio calculations of quantitative accuracy
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(albeit mainly for diatomic molecules) became possible. This
development was based on work started a decade earlier by
people such as Roothan, Boys, Pople and many others, but it
was facilitated by the introduction and increasing availability of
computers. In the 1970’s and 1980’s large improvements in
correlation methods were made. Hand in hand with the ever
increasing computer speed, these improved methods to calcu-
late dispersion energy allowed for the accurate calculation of
weak intermolecular interactions, which is the key to the
understanding of fluids on a microscopic level.

Whereas in quantum chemistry simple calculations were
possible even with mechanical and electrical desk calculators,
the field of simulations opened up only when electronic
programmable computers became available (for a short history
and references see ref. 1). The first molecular simulation was
carried out in 1953 on the Los Alamos computer, called
MANIAC, by Metropolis et al. This simulation was of the
Monte Carlo type, which does not yield dynamic information.
The first molecular dynamics simulations, in which collections
of hard spheres were modelled, were performed by Alder and
Wainwright four years later. Work on simulations of molecular
liquids was published only towards the end of the 1960’s. These

early publications opened the door to a flood of papers
sufficiently voluminous to prompt the creation of a number of
specialised journals over the subsequent two or three decades.
Nearly all of these papers deal with empirical simulations, in
which a microscopic model is calibrated from macroscopic
properties (see Box 1) and, thereafter, the microscopic model is
applied to calculate other macroscopic properties (see Box 2).
Whereas this might be interpreted as a very clever interpolation
between two sets of macroscopic data (through a microscopic
step), we will deal here with a one-way approach (Box 2), in
which the necessary microscopic information is obtained from
quantum chemistry without any experimental data, and the
resulting model is then used to calculate macroscopic proper-
ties. In this way, macroscopic properties are obtained purely
from theory, with no prior reference to experimental measure-
ments.

The microscopic model is simply an interaction potential,
often called a potential energy surface (PES). The first such
potential parametrized purely by ab initio calculations and
applied in simulations2 that we are aware of is the MCY water–
water potential published in 1976 by Matsuoka, Clementi and
Yoshimine.3

Box 1. Forth . . . From the macroscopic to the microscopic world

In this box we demonstrate how one proceeds from bulk
properties to the microscopic world of a model potential,
using argon as a case study. The results can be compared
to experimental data from the microscopic argon dimer
system.

STEP 1. Argon crystallizes in a face centered cubic (fcc)
lattice with a density of 1.79 g cm23 at 1 K and 1.62 g cm23

at 84 K (melting point). If the shortest distance between
two atoms is called re, then the side length of the fcc unit
cell is AB2 re and its volume 2AB2 r3

e. As the unit cell
contains four argon atoms with an atomic weight M of
39.95 g mol21, its density becomes 4M/(NA2AB2 r3

e) with re

being the only unknown. Hence, we can calculate the
distance re. Taking the average of the two numbers given
above for the density, we obtain re = 380 pm. This agrees
within 1% with the dimer equilibrium distance of 376 pm
obtained experimentally from rovibronic spectra (P. R.
Herman, P. E. LaRocque, B. P. Stoicheff, J. Chem. Phys.,
1988, 89, 4535).

STEP 2. The boiling point Ts is the temperature at the
equilibrium between the gas and the liquid phase, i.e.
Dg

l Gq = 0, and, hence,

Dg
l Hq = TsDg

l Sq = Dg
l Uq + PDg

l V ≈ Dg
l Uq + RTs

The last approximation is based on the fact that the liquid
volume is negligible in relation to the gas phase volume
and the gas is assumed to be ideal. From the above
equation we obtain Dg

l Uq = Ts(Dg
l Sq2 R). Let us now call

the interaction energy between two argon atoms (i.e. the
depth of the interaction potential) e. This is the energy
needed to separate two atoms from their equilibrium
separation distance, corresponding approximately to the
situation in the solid or the liquid, to infinity, correspond-
ing to the gas. The total energy used for the vaporisation
is then Dg

l Uq = 1
2eNneighbour (the division by two accounts

for the fact that the interaction energy is for a pair of
atoms). Combining this with the above result we have e =
2Ts(D

g
l Sq 2 R)/Nneighbour. Assuming 12 neighbours as in

the fcc lattice, and assigning with Trouton’s rule Dg
l Sq =

85 J mol21 K21, we obtain from the experimental boiling
point of 87 K a value for e of 1112 J mol21

or e/R = 133.7 K. This is in reasonable agreement

with the experimental value for the dimer of 142.7 K
(Herman et al., see above).

The results of steps 1 and 2, re and e, can now be used to
construct the Lennard–Jones potential shown in the figure
below. The equation for such a potential can be written in
the two following ways:

where s is the distance at which the potential is zero. Its
value is obtained by division of re by the sixth root of two,
as can be deduced from the above equations.

To make things even simpler the potential could be
approximated by a square well potential, as shown in the
figure. The depths of the potentials are identical and s =
339 pm is now assigned to the distance of closest
approach. The right wall of the well is chosen somewhat
arbitrarily at a distance where the Lennard–Jones well
decays to 1/e of its deepest value. This defines the third
parameter sA of the square well potential to be 495 pm.

The force constant k can now be calculated from the
Lennard–Jones potential as the second derivative of V at
the equilibrium distance re. This yields k = 72e/r2

e, or
together with the reduced mass m of the argon dimer, a
wavenumber w = 1/(2pc)(k/m)21/2 = 28 cm21, which is in
good agreement with the experimental value of 30.7 cm21.
The extremely different shape of the square well potential
would not lead to reasonable agreement for this property,
as one would infer from the figure.
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Since then Clementi and coworkers have been working along
this line right up to the present time, continuing to produce
improved potentials, and studying the influence of different
potentials on the calculated properties of water. Their early
efforts were made possible only with computer time grants from
the then dominating company in the field, IBM. It was less than
twenty years ago that this approach also became feasible for
groups at universities. An early paper was by Jönsson,
Karlström and Romano4 on nitrogen. However, only a few such
papers appeared during the 1980’s, and it was only with the
recent wide access to supercomputers and high performance
workstations that a notable increase of output in this field has
been observed.

What was feasible with only the most powerful computers
about 20 years ago can now be performed on workstations
priced at a few thousand pounds. Within a few years every
student will be able to calculate liquid properties of simple
systems with fair accuracy, purely from theory, on his or her
own desk.

2 What are the tools?

As mentioned in the last paragraph, the necessary hardware
consists only of a fast workstation. As software we need a
quantum chemistry package and a simulation package, and we
will also need to do some straightforward programming work to

build our quantum chemically calculated potentials into the
simulation code. The latter might be of the Monte Carlo or the
molecular dynamics type. We will deal here only with
molecular dynamics (MD) simulations, but many of the
properties we discuss can also be determined using Monte Carlo
simulations.

The standard route by which one proceeds from a micro-
scopic theoretical description to a macroscopic quantity is
shown in the movie-like Fig. 1, and consists of the following
steps:

a. Selection of a quantum chemical calculation method for
the determination of interaction energies;

b. Ab initio determination of interaction energies for a series
of conformations;

c. Fitting of an analytical PES to the calculated energies;
d. Performance of molecular dynamics simulations using the

analytical PES.
e. Analysis of the results, using statistical mechanics, to

obtain the macroscopic properties of interest.

The initial task is the construction of the analytical PES (steps
a–c from Fig. 1), describing the quantum chemical interactions
between the microscopic bodies making up the fluid. The term
‘body’ is here used for the smallest entity of the liquid, i.e. an
atom in the rare gas case and a molecule otherwise. The vast
majority of PES’s currently in use are pair potentials, in which
the total energy is approximated as a sum over pair interactions,
ignoring the effects of further bodies on each pair interaction.

Box 2 . . . and back. From the microscopic to the macroscopic world

In this box we apply the simple square well model
potential obtained in the first box to calculate macroscopic
properties, specifically the second virial coefficient and
the sound velocity.

The second virial coefficient B of a real atomic gas is
directly related to the potential by the following equa-
tion:

With the square well model potential we can easily
calculate this integral:

This yields the curve which is plotted and compared with
experimental values in the following figure:

The sound velocity v of a real gas is given by

where Vm is the molar volume. Applying the derivative to
the virial series we obtain to second order

and hence

With B obtained as described above from the square well
potential, the sound velocities shown in the figure below
were calculated. The experimental points were obtained
from the work of Ewing et al. (M. B. Ewing, A. A. Owusu
and J. P. M. Trusler, Physica A, 1989, 156, 899).

Other properties are obtained similarly. See for example
Hanson’s determination of the Joule–Thompson coeffi-
cient (M. P. Hanson, J. Chem. Educ. 1995, 72, 315).
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Although we later discuss work in which three-body inter-
actions were also included, we restrict our discussion at this
point to the construction of pair potentials.

One must first carefully select an appropriate level at which
to perform the quantum chemical calculations of energy (step
a). This decision involves the selection of both a method and a
basis set. The captions MP4(STDQ) and 14s 10p 4d 1f in Fig. 1a
represent typical choices of each for use in calculating the
energy of a neon dimer.

For each given relative conformation of two bodies (in the
rare gas case just a given distance), the interaction energy is
calculated using what is called the ‘supermolecular’ method, as
follows: the dimer energy Ed and the monomer energies Em1 and
Em2 are each calculated ab initio using quantum chemical
techniques, and the interaction energy is then given by the
difference Ed 2 (Em1 + Em2) between them. Due to the limited
basis sets used to represent the electronic wavefunctions, a so-
called basis set superposition error (BSSE) is introduced, which
is normally taken care of by the counterpoise correction (for a
review see ref. 5). The interaction energies tend to be very
small, requiring great precision in the calculations. Some have
compared this approach to measuring the weight of an airline
pilot by weighing an Airbus with and without the pilot, and
taking the difference. This astonishing picture is actually only
adequate if we are dealing with relatively strong, intramolecular
bonds. If we deal with a typical intermolecular energy, it is more
appropriate to compare with the hand baggage of the pilot. For
a neon–neon interaction, which is particularly weak, the
interaction energy corresponds in this picture rather to a block
of Swiss chocolate in the hand of the flight attendant. Reaching
chemical accuracy means determining the weights of Airbus

with and without chocolate bar with an accuracy of just one
square of chocolate! Clearly this places extremely stringent
demands on the accuracy of the measurements, which, in the
case of quantum chemical calculations, requires the use of
extensive basis sets and a high level of theory. Several efforts
are underway to develop methods of calculating these inter-
actions without the complications just described. For example,
BSSE-free methods include the symmetry adapted perturbation
theory (SAPT),6 the chemical hamiltonian approach (CHA) by
Mayer, in some cases supplemented by perturbation theory,7
and an additional method developed in Raimondi’s group.8,9

Such methods appear promising for future work.
A further complication in the calculation of intermolecular

(or interatomic in the case of the rare gases) interaction energies
is the fact that usually dispersion energy makes up a high
percentage. Only in systems with strong interactions, such as
hydrogen-bonded or ionic systems, is a calculation at the self-
consistent field (SCF) level reasonably accurate. In all other
cases electron correlation has to be included, which means
much longer computing times. Density functional theory (DFT)
would offer a cost-effective alternative, but the present
functionals are not able to yield the dispersion energy even
qualitatively correctly (for a first step to improve this situation,
see ref. 10).

We now turn out attention to the form of the PES. In the case
of rare gases, the pair potential is a one-dimensional curve (see
Fig. 1b) and an analytical fit of high accuracy is obtained with
10 to 15 energy points. In contrast, the general intermolecular
potential for molecules is a six-dimensional hypersurface, even
in the usual approximation where the monomers are kept rigid.
Normally, hundreds of points are necessary for the accurate
description of such a surface. To choose the number of points
and the important conformations, usually rough rules of thumb
are applied. (We are, however, aware of two papers whose
authors tried to be more systematic in this respect.11,12)

Having calculated the necessary energy points on an adequate
quantum chemical level, an analytical form has then to be found
which can be fitted with high accuracy to these points (step c).
This is an easy task for a one-dimensional curve, but no trivial
problem for a multi-dimensional hypersurface. Once the
analytical function has been found and carefully fitted, it is built
into the simulation program.

Once the PES has been constructed and coded, simulations
can be performed (step d). A molecular dynamics (MD)
simulation is usually started from some arbitrary configuration.
The evaluation of the energy and the forces on each body for
this initial configuration of bodies, and indeed for all of the
configurations generated during the simulation, is straightfor-
ward and efficient, requiring simply the evaluation of the
analytical PES function. Using Newton’s 2nd law we then
obtain, from the force and mass, the acceleration of each
particle, and from this the change in velocity over a small time
step. In turn, from the velocity we get the change in location of
a particle over the same time step. Working with small time
steps in this way is nothing other than a numerical integration of
Newton’s laws of motion. The time evolution of the system can
be followed for as long as desired, so far as computational
resources permit.

To obtain thermodynamic properties usually equilibrium
simulations are performed. The most often used ensemble in
equilibrium simulations is the microcanonical (NVE) ensemble,
in which the number of bodies (N), the volume (V), and the
energy (E) are all constant. An MD simulation of reasonable
length is generally thought to sample the ensemble sufficiently
that acceptable thermodynamic averages can be obtained.
Typically a few hundred to a few thousand particles are used,
and V is chosen to conform to a selected density. The energy
remains constant by virtue of the conservative nature of the
potential, but is only indirectly chosen, through the choice of the
mean simulation temperature T. Non-equilibrium simulations,

Fig. 1 Going from the microscopic to the macroscopic.

124 Chem. Soc. Rev., 1999, 28, 121–133



in which the configurations generated do not belong to any well
defined thermodynamic ensemble, may be usefully performed
for investigating phase transitions or transport properties, for
example. There are many details to be taken care of in both
equilibrium and non-equilibrium simulations which we do not
discuss here, such as periodic boundary conditions, different
integration algorithms, initial equilibration, and so on. The
interested reader is referred to the excellent book of Allen and
Tildesley.1 One thing we would like to emphasise is that all the
approximations of the simulation itself, such as finite time step,
limited particle number etc., which we might call ‘technical
errors,’ can be relatively easily reduced such that they are
negligible, so the only error sources remaining are the
approximations listed in Box 3.

After equilibrium in a simulation is reached, it is carried on
for typically 10 000 to 100 000 steps and data—such as the
location of, velocity of, and forces on each particle—are stored
for evaluation (step e). Typical properties one wants to obtain
from such an NVE simulation at a given density and temperature
are, for example, the pressure P, the internal energy U, or the
molar heat CV,m. The internal energy U in a classical
approximation is easy to obtain, as it corresponds directly to the
energy E. Usually it has to be transformed to a different zero
point of energy and some quantum corrections have to be
applied for the vibrations in molecular liquids. The pressure P is
given by eqn. (1). It consists of a kinetic or ideal gas part,

P
V

Nk T r FB i i

i

N

= +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Â1 1

3
1

(1)

obtained easily from the particle velocities (via the tem-
perature), and a potential or non-ideal part calculated from the
locations of (ri) and forces on (Fi) the particles. The third
property mentioned above, the molar heat, is given by eqn. (2),

C R
N

R T
EV m kin, = -

< >
< >È

ÎÍ
˘
˚̇

-3

2
1

2

3 2 2
2

1

d (2)

with the usual symbol definitions, and < dE2
kin > being the

variation of the kinetic energy.
The relatively straightforward process described thus far

takes on some additional complexity when molecular fluids are
the system of interest. As most ab initio intermolecular
potentials can only be calculated with the monomers kept rigid
due to the high dimensionality of the problem, either one has to
keep the molecules rigid in the simulations as well, or one has

to add an intramolecular potential, hence assuming a further
additivity. When flexible molecules are used, one has to be
extremely careful that all of the molecular internal degrees of
freedom are in equilibrium and, depending on the data
evaluation scheme, that the simulations are longer than the
energy transfer time between the different degrees of freedom.13

Further difficulties arise for flexible molecules when calculat-
ing properties from fluctuations in energy, such as eqn. (2) for
the molar heat. The high frequency intramolecular vibrations
tend to introduce strong periodic fluctuations, which introduce
large statistical errors. However, alternative ways of data
evaluation are often available. For example, the molar heat CV,m

can also be calculated as the numerical derivative of the internal
energy U with respect to temperature.

To end this section we would like to include a paragraph
about the Car–Parrinello method of performing first principles
MD simulations. In these simulations, the intermolecular
interactions are calculated quantum chemically at each step of
the simulation, for the entire system. In this way, many-body
effects are inherently included. At present, such calculations are
only possible using for the quantum chemical calculations a
density functional approach with plane wave basis functions.
Although this might change in the future, for the moment DFT
calculations are only adequate for strong intermolecular
interactions, such as ionic interactions or hydrogen bonded
systems. Even then, these simulations are extremely time
consuming, and only properties which can be obtained from
relatively small ensembles and short runs, such as g-pair
distribution functions, have been calculated so far.

3 Applications

3.1 Rare gases

The discussion for the rare gases neon and argon given here is
structured around five groups of properties, which each behave
differently with respect to the different approximations. The
five groups are: the fluid structure represented by the g-pair
distribution function, transport properties, the thermodynamic
energies and state function, properties derived from those (also
in the mathematical sense of derivatives), and the melting
curves.

The neon work was based on two different ab initio PESs,14

NE1 and NE2, which are compared in Fig. 2 with a purely
empirical pair potential by Slaman and Aziz. Based on many
pair properties it was deduced that the step from NE2 to the
exact potential is similar to or smaller than the step between
NE1 and NE2. This allows us to estimate the improvement
which one could expect from a further improvement in the pair
potential and, hence, whether such an effort is worthwhile. In
the argon work a potential by Woon15 was employed, which has
a very similar quality level as the NE2 neon potential.

Structure. Calculated g-functions for neon at three liquid
points where experimental curves are available showed that the
overall agreement with experiment is fair, the only discrepancy
being the height of the peak corresponding to the first shell.
Going from NE1 to NE2 hardly changed the results,14

indicating that an error source other than the pair potential must
be responsible. Simulations including quantum effects in an
approximate manner (quantum effective potentials by Wigner
and Kirkwood) showed that these accounted completely for the
discrepancy.16 Fig. 3 shows the experimental g-function in
comparison with our simulated curve for liquid argon. Similar
results were obtained not only for the liquid neon points, but
also for argon in the supercritical state at 380 K at different
pressures.17 A three-body potential for neon was also applied, in
order to show directly the negligible size of the many-body

Box 3. How sensitive are fluid properties to:

• the quality of the quantum chemically calculated
pair potential?

• the neglect of many-body interactions?
• the neglect of translational quantum effects?
• the neglect of vibrational quantum effects?
• the additivity approximation between intra- and

intermolecular potentials?

The first three questions are quite general and will be
addressed in this review. The last two are of importance
for molecular fluids, but will not be discussed in detail as
we do not yet know much about them.

In addition to these error sources, other approxima-
tions are made in the simulations which we call
‘technical errors’, such as the use of a finite time step
and restricted numbers of particles, etc. Choosing
appropriate values for the various technical parameters,
these technical errors can always be made negligible
compared to the systemic error sources listed above.

Chem. Soc. Rev., 1999, 28, 121–133 125



effects.16,18 The overall conclusions for the structures of fluid
neon and argon are: (a) a fairly good pair potential is sufficient;
(b) many-body effects are negligible; (c) quantum effects are
important at low temperatures.

Transport properties. Even though extremely long simula-
tions were performed for the transport properties,14 the
statistical errors for the thermal conductivity and the viscosity
were still large, typically between 5 and 10%. The diffusion
coefficient was obtained more accurately, because the trajectory
of each particle provides a data point, whereas the other
properties require the trajectory of the entire system.

Fig. 4 shows the calculated versus the experimental viscosity
of neon at 300 K in the supercritical state, for pressures between

100 and 1000 MPa, in increments of 100 MPa (the viscosity
increases with the pressure). The error bars are standard
deviations. As is easily seen, the calculated and experimental
values agree to within two standard deviations. There might be
a small trend to disagreement at very high pressures, but it is not
statistically significant. Even more in agreement are the values
from the two different potentials, showing that an improvement
can probably not be expected from an improved pair potential,
but that any real deviations at high pressures would be due to
many-body effects. A plot of the thermal conductivity shows
exactly the same picture.

Table 1 shows values of the transport properties for four
liquid points at low temperature, obtained with the two pair
potentials without quantum corrections. Again for the viscosity
and the thermal conductivity no difference is produced from the
different potentials. The diffusion coefficient, on the other hand,
seems to increase by roughly 10% with the improved potential.
We will give a more sophisticated discussion of this property in
the next section. It is somewhat difficult to make a meaningful
comparison between the values obtained with the different
potentials, and even more so with the experimental values, as
the equations of state do not agree well in the liquid at this level
of calculation, leading to quite different pressures at a selected
NVE point. In spite of this problem, the agreement obtained was
reasonably good.

Fig. 5 is an Arrhenius plot of diffusion coefficients
determined from experiment, and calculated at different levels
of sophistication.19 The experiments, by Henry and Norberg,
were performed at low pressures (about 1 bar). The calculated
points are extrapolations to zero pressures from series’ of
simulations performed at moderate pressures. The values
obtained from the NE1 potential are about 50% too large. The
improved potential, NE2, lowers this error to about 10%.
Including the three-body interaction (TBI) brings the results
into perfect agreement with experiment. However, at these low
temperatures quantum effects should also be considered. For
technical reasons they could not be combined with TBI, and
were instead included as a quantum effective pair potential
using the method of Wigner and Kirkwood (WK). Nevertheless,
it is clear that they worsen the agreement. If we assume
additivity between the three-body effects and the quantum
effects, which is probably a good approximation, the resulting
values would be about 25% too large. The only space for
improvement left seems then to be a further refinement of the
pair potential and, regarding the large effect going from NE1 to
NE2, this might bring the calculated points back into agreement
with experiment.

In conclusion, for the viscosity and the thermal conductivity
of neon (and similar results were obtained for argon20) we can
say that within the relatively large statistical error of 5 to 10%:
(a) a fairly good pair potential is sufficient; (b) many-body
effects are negligible; (c) quantum effects are negligible.

The diffusion coefficient of neon, which was obtained with a
very small statistical error, is not known experimentally for the
supercritical state and, hence, no comparison is possible. In the
liquid state: (a) an excellent pair potential is needed; (b) many-
body effects lower the coefficient by about 10%; (c) quantum
effects increase the coefficient by about 25%.

Pressure and energies. The energies and, even more so, the
pressure were found to be the most sensitive properties to all of
the error sources investigated.14,20 Fig. 6 shows the difference
between simulated and experimental pressure at 300 K in the
supercritical phase for densities corresponding to experimental
pressures of 100, 400, 700 and 1000 MPa. Let us first compare
the deviations between the results obtained from the two pair
potentials. From such a comparison, it is evident that the
growing deviation with increasing pressure does not necessarily
imply that many-body interactions play a major role. The
improved pair potential NE2 lowers the parabola in such a way

Fig. 2 Comparison of neon pair potentials. NE1 and NE2 are ab initio
potentials of different quality and the HFD_B potential is a well known
empirical pure pair potential by Aziz and Slaman, which is assumed to be
virtually exact.

Fig. 3 Comparison between the g-pair distribution function from experi-
ment and that obtained by simulation with an ab initio quantum chemical
potential for liquid argon.
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that one could even conclude that an exact pair potential would
yield exact pressures. Solving the Percus–Yevick equations for
a hard sphere model analytically shows a similar dependence,
with the main parameter affecting the curvature of the parabola
being the size of the spheres.

The inclusion of the TBI, however, leads to a non-parabolic
dependence. The overall agreement is excellent—with a
deviation of about 1%, chemical accuracy has been reached. A
more refined discussion should, however, take into account that
an exact pair potential would probably lower the pre-TBI
deviation by an estimated two or three percent, hence leading to
overly small pressures once TBI is included. At the same time

though, a second order perturbation calculation gives an
estimate of a slightly more than 1% increase due to translational
quantum effects, partially balancing this decrease. It may
surprise the reader that at 300 K translational quantum effects
should play a role. The extremely high pressures lead in fact to
a ‘cage effect’, so that the translation of each atom approximates
a vibration within this cage.

Fig. 7 shows another interesting feature of the deviation
between the experimental and calculated pressure. The pres-
sure, shown at constant density as a function of temperature in
the liquid and supercritical state (Tcrit = 44.4 K), always
manifests the same absolute deviation, regardless of whether the
fluid is above or below the critical temperature. The calculated
values were obtained with the NE2 potential and corrected for
quantum effects by a second order perturbation calculation. The
same feature was also observed at higher temperatures for

Fig. 4 Simulated versus experimental viscosity for supercritical neon at
pressures between 100 and 1000 MPa.

Fig. 5 Arrhenius plot of the diffusion coefficient for liquid neon (see text for
a description of the various curves).

Table 1 Transport properties of liquid neon. The errors are given in parentheses in units of the rightmost digit

D/10210 m2 s21 l/Wm21 K21 h/mPa s

T/K r/kg m23 NE1 NE2 NE1 NE2 expa NE1 NE2 expa

26 1224 12.2 (1) 13.7 (1) 0.134 (4) 0.137 (6) 0.133 135 (4) 121 (3) 150
28 1189 15.6 (1) 17.4 (1) 0.129 (4) 0.119 (2) 0.124 117 (3) 108 (3) 131
36 1043 34.9 (1) 37.3 (1) 0.099 (3) 0.094 (2) 0.092 66 (2) 59 (1) 71
44 942 55.5 (2) 57.9 (1) 0.079 (3) 0.080 (3) 0.077 44 (1) 47 (1) 52

a The experimental values can be compared only roughly to the simulated ones as the NE1, NE2 and experimental equations of state are quite different
for the liquid. A more detailed comparison is made for the diffusion coefficient in Fig. 5.

Fig. 6 Deviations between simulated and experimental pressures versus
density for neon at 300 K (the densities correspond to experimental
pressures of 100, 400, 700 and 1000 MPa; technical details of the various
simulations are discussed in the text).

Fig. 7 Deviation in pressure for liquid and supercritical neon versus
temperature at constant density.
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argon. This behaviour leads to the situation that in the given
example the 33 MPa magnitude of the absolute error at 298 K is
comparable to the 28 MPa error at 28 K; however, while the
relative error is only 5% at 298 K, it rises to 140% at 28 K
(experimental pressure 20 MPa). The situation would be even
worse for a liquid at 1 bar!

Table 2 shows thermodynamic energies for neon as a
function of pressure. Where experimental values are available,
they deviate less than 2% from the calculated ones. The latter,
including TBI, can be used as accurate predictions of energies at
pressures where no experiments have been performed. Note that
even here the inclusion of many-body effects is far less
important than the use of a very accurate pair potential. The
largest influence due to TBI (at 1000 MPa) for the internal
energy is only slightly more than 2%, whereas the improvement
of the pair function from NE1 to NE2 (data not given here)
yields at the same state point a 5% change.

In conclusion, from the results for neon, which are supported
by work on argon, we find that for the pressure and energies: (a)
the pair potential should be extremely accurate; (b) many-body
effects are sizeable at high densities only; (c) quantum effects at
low temperatures are large.18

Derived thermodynamic properties. For neon and argon,
experience was accumulated in the calculation of molar heats at
constant volume and pressure, compressibilities at constant
temperature and entropy, the thermal pressure coefficient, the
Joule–Thomson coefficient and the sound velocity c. Experi-
mental values against which to check the accuracy are not
available for all properties at all state points. Some properties
were obtained with small statistical errors (e.g. the sound
velocity), while others show sizeable statistical errors even after
long simulations (e.g. the molar heat at constant pressure).
However, the overall picture seems always to be similar, and is
illustrated in Fig. 8 for the case of the sound velocity.

Even with the NE1 potential, the deviation from experiment
is only about 5%. The NE2 potential improves the values
significantly, decreasing the deviation to less than 2%. Al-

though this is already good, and close to the technical accuracy
limit of the simulation, a check for the effect of the TBI was
performed with neon. No visible improvement was found. In
view of the estimated deviation of NE2 from the exact potential,
it seems clear that this does account for the remaining deviation
of the derived properties. It may surprise the reader that many-
body effects have no influence even at high pressures, in light of
their importance for the underlying properties. The reason is
probably that the influence of the many-body interactions on the
underlying property in question does not change much under
slightly changed conditions. For example, the enthalpy obtained
from a given pair potential plotted against the temperature at
constant pressure gives a curve virtually parallel to the
experimental curve. Hence, the slope, i.e. the molar heat at
constant pressure, is the same for the two curves. In the liquid
state of argon between 95 and 145 K, the deviations are, at about
4%, only slightly higher than those of NE2 neon (remember that
the quality of the argon potential is close to that of the NE2
potential for neon).

For neon at 28 K the deviation increases to about 25% for the
sound velocity, and up to 100% for other derived properties.
Given the low temperature, this large deviation indicates the
importance of translational quantum effects for properly
describing these properties.

Summarising we may conclude for the derived thermody-
namic properties that: (a) a good pair potential is needed, but
less so than for the pressure; (b) many-body effects are
negligible (probably due to cancellations); (c) quantum effects
are very important at low temperatures.

Melting curves. Melting curves have been calculated for
neon and argon up to about 300 K, with the pair potential only.21

These investigations were carried out using non-equilibrium
molecular dynamics simulations in an NPH ensemble (i.e. N the
number of particles, P the pressure and H the enthalpy are
constant). For neon (see Fig. 9) the highest temperature point

corresponds to a pressure of about 5 GPa, for argon only to
about 1 GPa. Whereas the points for argon always deviate by
less than 3 K from the experimental ones, which is within the
statistical error, the difference between the simulated and the
experimental neon curve shows an increasing trend at higher
pressures (see Fig. 9), although even there the difference is not
more than about two standard deviations. In the simulations one
has to be careful to introduce some non-ideality in the starting
geometry of the solid, otherwise superheating occurs, and the
mechanical instead of the thermodynamical melting point is
reached. The results and tests performed showed that: (a) the

Table 2 Internal energy and enthalpy for neon at 298 K, in J mol21

P/MPa r/mol m23 Uexp Usim Hexp Hsim

100 26 472 3372 3424 7110 7258
400 54 411 3422 10 763 10 875
700 66 998 3688 14 369 14 247

1000 75 737 4025 17 380

Fig. 8 Experimental and simulated sound velocities versus pressure for
supercritical neon.

Fig. 9 Experimental and simulated melting curves for neon.
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pair potential has not to be extremely accurate; (b) many-body
effects might be sizeable at pressures higher than 1 GPa; (c)
quantum effects are small.

3.2 Carbon dioxide

As pointed out in Box 3, two additional problems arise when
modelling molecular systems. First, the additivity between the
intermolecular and the intramolecular potential is an approx-
imation, the latter being in the present case only a harmonic
approximation itself. Second, the intramolecular vibrational
motion is treated classically. At present, we are not able to
investigate the quality of these approximations, nor the
influence of many-body effects. Fortunately, translational
quantum effects can be assumed to be small at the temperatures
of interest, i.e. not too far away from ambient temperatures. The
discussion here focuses on the influence of the quality of the
pair potential on the different properties.

Whereas for the rare gases the interaction energy is of purely
dispersion type, for carbon dioxide a similar sized contribution
due to the electrostatic and inductive interaction of the strong
quadrupole moment is expected. This in itself should not be
much of a problem for the quantum chemical calculation. The
problem is rather that dispersion is still an important contribu-
tion, and that for dimers containing six first row atoms it is still
not possible to perform calculations of adequate quality to
describe dispersion quantitatively. Hence, Domanski et al.,22

having calculated a potential ab initio, decided to use it in
simulations only after an empirical adjustment. Tsuzuki et al.
performed ab initio calculations on about the best level
presently possible, but they used only 40 points to fit the
parameters of their ansatz, and for the ansatz itself they selected
an empirically approved form, i.e. their approach was not
directed to produce an unbiased ab initio pair potential (for a
detailed discussion see ref. 23). Hence, we will report here
mainly the results of our group, obtained with two pair
potentials,13,23 and point in only a few cases to the results of
Tsuzuki et al.24 Our potentials were calculated on a much finer
mesh, with large basis sets contracted to 5s 4p 2d and 8s 6p 4d
1f, respectively, including electron correlation by second order
Møller–Plesset perturbation theory (MP2). Whereas the larger
basis set is close to saturation with respect to the intermolecular
interaction energy, the MP2 level is not adequate to obtain the
complete dispersion energy.

Structure. In Fig. 10 simulated and experimental pair
distribution functions are compared. The experimental curve
was obtained from neutron diffraction measurements, whereas
the simulated curve is the neutron-weighted sum of the C–C, C–
O and O–O pair distribution functions, obtained from simula-
tions using the better (8s 6p 4d 1f) potential. (Simulations
performed using the 5s 4p 2d potential give essentially identical
results at these higher densities, but begin to diverge as the
density is decreased.) The overall picture shows fair qualitative
agreement, as was also found for other phase points.13

However, there is no quantitative agreement. We assume that
carbon dioxide is an extremely difficult case with respect to the
structure. The reason is that the dimer has two very different
conformations of nearly equal energy. Experiment and calcula-
tions now agree that the global minimum is a slipped parallel
conformation. However, calculations predict a T-shaped con-
formation to be a transition state between two slipped parallel
conformations, which is probably less than 1 kJ mol21 higher
than the minimum. In fact, there are four slipped parallel
conformations which are connected by four T-shaped transition
states, enabling a planar geared rotation through all eight points,
hence leading to a large number of conformations of nearly
equal energies with quite different intermolecular structures.
For more trivial systems with similar intermolecular forces we

might, therefore, expect a reasonable prediction of the pair
distribution function from fairly accurate pair potentials,
whereas for carbon dioxide the function is a sensitive measure
of the details of the potential surface near the minimum and the
transition state.

Transport properties. The calculation of transport proper-
ties, or, more precisely, of the thermal conductivity and the
shear viscosity, in equilibrium molecular dynamics simulations
is very time demanding. Extremely long runs are required to
obtain even modestly small statistical uncertainties. We have
calculated a number of transport properties for both liquid and
supercritical carbon dioxide,23 determining each property by
two different methods.

The diffusion coefficient was obtained from the Einstein–
Smoluchowski relation, and from a time correlation function
(Green–Kubo integration). The results are roughly 13% too
small. The better potential and the Einstein–Smoluchowski
relation seem to yield slightly more accurate values. Tsuzuki
et al.24 calculated diffusion coefficients at 323 K for densities
up to 19370 mol m23, which were too small by a similar
amount, the largest deviation being 20% for the highest
density.

The thermal conductivity was calculated once with an
equation valid for rigid molecules, and once by localizing the
total energy and momentum of each molecule at its center of
mass. The results are roughly the same, but the rigid model
shows less statistical error. The values generally agree with
experiment to within the statistical errors.

For the shear viscosity, the two evaluations used were
identical to those used for the thermal conductivity. Here, in
addition, a model where energy and momentum are located on
each atom was applied. The results show no conclusive pattern.
They are in general slightly larger than the experimental results,
but lie roughly within two standard deviations. In conclusion we
might state that there is no clear improvement of the calculated
values with the better pair potential, and hence the transport
properties are not very sensitive to the quality of the pair
potential.

Pressure and internal energy. The pressure of a dense fluid
is the most sensitive property to any error sources. Fig. 11 shows
the experimental pressure, and the pressures calculated from the
two different pair potentials at 300 K, versus the density. With
increasing density the absolute deviation is increasing, but the
relative deviation is decreasing. The agreement is much better
for the better pair potential, however the relative deviation at the
highest density is still 34%. In contrast to the rare gases where
the accuracy of the results is relatively high, we are now only

Fig. 10 Comparison of g-pair distribution functions for carbon dioxide at a
density of 20 455 mol m23. The simulated curve was obtained with the 8s
6p 4d 1f potential.
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just reaching a point where quantitative calculations for carbon
dioxide are becoming possible. At this point we should be
careful when drawing any conclusions about the error due to the
neglect of many-body interactions. Many authors show an
inclination to attribute the deviation of their simulation results
from experiment to ‘many-body interactions.’ However, even
the second virial coefficient, which is a pure pair property,
shows a strong disagreement between calculation and experi-
ment. For a test calculation the better potential was scaled in the
energy axis to fit the experimental virial coefficient, and was
then used in a simulation in the liquid state. The pressure was
then no longer too large, but decreased to the extent that it even
became slightly negative. This demonstrates that an improve-
ment in the pair potential could still strongly change the
calculated pressure.

A further indication of the sensitivity of the pressure to the
nature of the pair potential is given by the following
comparison. Tsuzuki et al.24 have calculated pressures at
densities up to 20 000 mol m23 between temperatures of 320
and 400 K. At the highest density and 320 K they obtain a
pressure which is 12% too small, whereas at a similar state point
the better of our potentials yields a pressure which is 50% too
large. Bearing in mind that the potential used by Tsuzuki et al.
was fitted to accurate MP2-level quantum chemical calcula-
tions, as was our potential, the explanation for this astounding
difference must lie in the use of an empirically selected ansatz
by Tsuzuki et al., along with the extra flexibility in their fit due
to the low number of points used.

The internal energy corresponds in a simulation of the
microcanonical ensemble to the constant energy E. However, in
a simulation with flexible molecules a correction for the
vibrations has to be applied as the simulation treats them
completely classically. In the work discussed here, this has been
done in the most simple way, by subtraction of the classical
contribution RT, and addition of the quantum chemical
contribution for the harmonic oscillator of the frequency used in
the intramolecular potential for each vibrational eigenstate.
Whereas for the worse potential the resulting energies are
typically 2.5 kJ mol21 ( ~ 10%) too large in the investigated
range, the deviation from experiment decreases to about 1.1
kJ mol21 ( ~ 5%) for the better potential. We hence expect to
obtain values close to experiment with an exact pair potential.

Derived thermodynamic properties. The thermal pressure
coefficient gV and the molar heat CV,m at constant volume were
calculated13 as numerical derivatives of the pressure and
internal energy at different state points. The thermal pressure
coefficient cannot be compared to experimental values as no
such data are available. The experimental molar heats are fairly
constant, lying betweeen 39.2 and 42.9 J mol21 K21 over the
ranges investigated (from 280 to 440 K at a density of 18 225

mol m23, and densities from 18 225 to 25 665 mol m23 at 300
K). The calculated values are typically 5 to 10% smaller, which
is within the uncertainty limits of the relatively crude evaluation
method. No significant difference was observed between the
two different potentials, although the values obtained with the
better potential seem to be slightly closer to experiment.

3.3 Water

Whereas the rare gases cause some problems due to their
extremely weak interactions, we should be aware that they form
very simple liquids. Therefore, it might not be so surprising that
we obtain quite quantitatively accurate results once the quantum
chemical calculation of the interaction energy has reached a
reasonable level. Additional problems arise for the molecular
liquid carbon dioxide with its internal degrees of freedom,
where the vibrations no longer follow the classical laws of
motion and the intermolecular potential cannot yet be calculated
on the necessary level. However, water is an even more
complicated liquid with its hydrogen bonds and, although it has
been the subject of most of the ab initio investigations carried
out in the last two decades, we cannot yet expect even the
accuracy that has been reached for carbon dioxide. Due to its
high polarity, larger many-body interactions are expected. The
hydrogen bonds lead to hindered rotations, hence being the
source of sizeable quantum effects even at room temperature.
Quantum effects might also play a role in a tunneling and/or
zero point vibrational movement of the hydrogen in the
hydrogen bond.

For water there have not been as many properties calculated
and compared with experiments over wide ranges of phase
points as for the other systems we have already discussed. Most
work has dealt with only the structure, as it is difficult enough
to find agreement between experiment and calculations even for
this relatively insensitive property. For water the experimental g
function can be resolved in site–site pair distribution functions
gHH, gOH and gOO. However, different experiments have yielded
quite different functions, and even now the most recent
work25,26 can only be considered semi-quantitative, particularly
when it comes to the peak intensities. This important point must
be kept in mind throughout the following discussion.

Below we will compare experimental with simulated data
from recent work on water. This includes the simulations of
Famulari et al.9 which were done with a newly reparameterised
version of the NCC-vib potential, originally developed by
Nieser, Coringui and Clementi. The reparameterisation was
carried out by fitting to ab initio BSSE-free calculations for 225
dimer and 28 trimer configurations. We also discuss the work of
Liu et al.,27 carried out with a new potential based on relatively
few ab initio points (94 dimers and 57 trimers), and the work of
Corongiu and Clementi28 in which the NCC-vib potential was
used. In both of these studies, partial counterpoise corrections
were performed to reduce the BSSE. (This publication of
Corongiu and Clementi is not as recent as the others we refer to,
having appeared in 1992, but it is based on long experience with
ab initio water work in that group.) A few results of Car–
Parrinello simulations29,30 obtained with different functionals
are also available for comparison. (The work reported in ref. 30
is based on that of ref. 29, and was performed in the same
group). The structure used for the comparison below was
obtained with a functional due to Becke, Lee, Yang, and Parr
(BLYP). These calculations were BSSE-free by virtue of the
plane wave basis employed.

Millot et al.31 recently developed two new parametrized
polarizable pair potentials based on ab initio calculations, which
they tested together with 12 other polarizable models from the
literature in reproducing pair properties. They report quite
promising results, but the potentials have not yet been applied to
the condensed phase, preventing any detailed comparison in our

Fig. 11 Experimental and simulated pressures versus density for fluid
carbon dioxide.
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discussion here. For the second virial coefficient they obtain
good agreement with experiment between 373 and 973 K when
first-order quantum corrections are included. The quantum
corrections are substantial, amounting to 10–15% of the
classical value at 373 K, 20–25% at 323 K, and 30–35% at 273
K. The SAPT-based potential of Mas et al.6 also gives very
good agreement with experiment for the second virial coeffi-
cient, with quantum corrections of up to 20%. These results
suggest that also in typical liquid simulations quantum effects
are substantial, and one has to go beyond classical simulations
to obtain quantitative results. This has not been done in the
simulations we are about to compare (for a critical discussion
see also ref. 32). First steps, although with empirical potentials
only, to include quantum effects on a level managable with
todays computers were published in the last few years by
several groups (see references in ref. 33). Strong quantum
effects are observed at ambient temperatures, e.g. the pair
distribution functions show less pronounced shells, with the
peaks flattened by 10 to 20%, as is seen for the rare gases at low
temperature (see discussion in Section 3.1). We will include
quantum effects in our qualitative discussion of the water
structure below, but we are not able to discuss the influence of
the other error sources in detail with only the data currently
available.

Structure. Fig. 12 shows a comparison between the
experimental and calculated pair correlation functions gOO, gOH

and gHH at ambient conditions. All potentials correspond to
flexible and polarizible water molecules obtained from quantum
chemical calculations. The two experimental pair distributions
discussed here are the last published curves from Soper,25 as
well as slightly improved curves obtained by reanalysing the
same measurements using a refined procedure.34

The experimentalists stress that the intensities of the peaks
they report are not very accurate, and hence the simulations
should not be critically judged by the degree of their agreement
with the measured intensities. Soper gives a typical standard
error of about 15% for the first peak of each curve, and about
half that size for the second peak, with the exception of the
second peak of the gOO function, where the error is still about
10%. As is well known, one has to expect that the error of an
individual curve is about twice the standard error, and a
comparison of the 1997 values of Soper shows indeed a
deviation from the new values (obtained from the same
experiment) of around that size.

The simulated curves show quite different intensities from
one another as well as sizeable deviations from the experimental
intensities. However, due to the large uncertainties in the
experiment, it is not possible on the basis of these differences
alone to discriminate between the qualities of the different
potentials. A further cause for uncertainty in a comparison is the
absence of quantum effects in all simulations. From empirical
simulations we know that the first peaks decrease by about 10 to
20% when quantum effects are included, whereas the prominent
second peak in the gOH function is not much affected.

In contrast to the intensities, the radial positioning of the
peaks in the experimental curves is considered to be quite
accurate. In the region of the first peak, there is a good
agreement in the radial behaviour between all curves in Fig. 12.
At longer distances, the curves of Famulari et al. deviate
noticeably from the others. The cause of this deviation is,
however, clear. This particular work of Famulari et al. is the
first application of their new BSSE-free approach, i.e. not
requiring counterpoise correction, to water. The authors
attribute the poor long range behaviour to the absence of
sufficient diffuse basis functions in the ab initio calculations.
Preliminary investigations have shown that extension of the
basis set with extra diffuse functions improves the treatment of
the long range interactions.35

Not withstanding this failure of the current Famulari et al.
potential to reproduce the long range structure, we may say in
conclusion that all of the simulations discussed give results in
reasonable agreement with the experiment, when the un-

Fig. 12 The gOO, gOH and gHH radial pair distribution functions of water at
ambient conditions. The results from four recent simulations are compared
with experiment. In each case, two experimental curves are shown. The one
with the lower first shell peak intensity is from ref. 25. The other was
extracted from the same experimental measurements, but using a refined
analysis technique.34
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certainties of the quantum effects and the relatively large
uncertainties in the experimental intensities are taken into
account. On the theoretical side, most future effort should be put
into the inclusion of quantum effects, which can probably be
successfully done by the application of a perturbation approach
such as that used in ref. 16. On the experimental side, a decrease
in the standard deviations of the peak intensities is needed, to
enable a meaningful comparison with the independently-
obtained theoretical results.

Measurements and calculations of the structure at other phase
points have also been made, but it would not add greatly to our
discussion to go into more details here. The interested reader is
referred, for example, to refs. 9 and 26, and references
therein.

Transport properties. Liu et al. report a diffusion constant
at ambient conditions of 1.9 ± 0.15 3 1029 m2 s21 and
Corongiu36 one of 2.4 3 1029 m2 s21, compared to an
experimental value of 2.30 3 1029 m2 s21. Sprik et al.29 find
values of 2.3 (B), 0.035 (BP) and 0.13 (BLYP) 3 1029 m2 s21

for three different functionals.

Pressure and internal energy. Famulari et al. obtain a
pressure of 72.4 ± 15.6 MPa at ambient conditions. Although
this is a factor 724 too large, it is a great improvement in
comparison with previous results obtained with other potentials.
The absolute error of 72.3 MPa might be compared to an
absolute error of about 25 MPa for carbon dioxide at 300 K and
a similar gram-density. Liu et al. report a pressure of 260 MPa
for water under the same conditions, while the NCC-vib
potential yielded 2216 ± 36 MPa.

Internal energies are compared for two state points.9 Both at
ambient conditions, where Famulari et al.’s calculated value of
240.56 ± 0.22 kJ mol21 corresponds to an experimental value
of 241.5 kJ mol21, and at 573 K and a density of 0.71796
g cm23 (222.43 ± 0.09 kJ mol21 calculated vs.222.2 kJ mol21

experimental) the agreement is excellent. The simulation was
performed using the MOTECC suite of programs developed by
Clementi’s group, and does not include any quantum correction.
23% Of the potential energy was found to stem from the many-
body polarization term, possibly providing an indication of the
importance of this term. Liu et al. report an internal energy of
242.3 kJ mol21 at ambient conditions. Corongiu obtains a
value of 241.4 kJ mol21, after making an inter- and
intramolecular zeroth-order quantum correction.

Derived thermodynamic properties. Famulari et al. give a
calculated molar heat at constant volume of CV,m = 93 J
mol21 K21 at ambient conditions, calculated in the usual way
from temperature fluctuations, which must be compared with an
experimental value of 75 J mol21 K21. The large deviation here
contrasts with the relatively good agreement for the internal
energy. This deviation could be reduced by the inclusion of
quantum corrections, which are expected to make non-
negligible contributions.35

4 Outlook

Yes, molar heat capacities and viscosities of liquids can be
calculated purely from theory! In most cases, though, the
quality of the results is not yet above all doubt. For the rare gases
neon and argon a predictive level has been reached for many
properties. For them and the heavier rare gases, as well as for
rare gas mixtures, we will probably be able within a few years
to calculate any property as accurately as measurements can be
performed. For molecular liquids without hydrogen bonds and
strong dipole moments, this goal should be reached within the

next two decades, for moderately sized molecules and mixtures
of them. Thereafter the same quality will slowly but surely be
approached for larger systems. For molecules with hydrogen
bonds the situation might be more complicated, due to quantum
effects in librational motions and the tunneling of the bridge-
hydrogen. For such systems, classical simulations might not be
adequate to predict other properties than those discussed in this
review, as suggested by Brodsky32 in his somewhat pessimistic
letter entitled: ‘Is there predictive value in water computer
simulations?’ In the meantime, the methods that have been
discussed in this Review will continue to provide a useful bridge
between microscopic theory and the observable world, for the
large variety of systems to which they are well suited.
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